
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, VOL. 23, 1133-1 144 ( I  996) 

CALCULATION OF WALL-BOUNDED COMPLEX FLOWS AND 
FREE SHEAR FLOWS 

T.-H. SHIH AND J. ZHU 
Center for Modelling of Turbulence and Transition, ICOMP, OAI, NASA Lewis Research Center, Cleveland, OH, U.S.A 

AND 

JOHN L. LUMLEY 
Cornell University. Ithaca, NY, U.S.A. 

SUMMARY 

Various wall-bounded flows with complex geometries and free shear flows have been studied with a newly 
developed realizable Reynolds stress algebraic equation model. The model development is based on the invariant 
theory in continuum mechanics. This theory enables us to formulate a general constitutive relation for the 
Reynolds stresses. Pope (J. Fhid Mech., 72, 331-340 (1975)) was the first to introduce this kind of constitutive 
relation to turbulence modelling. In our study, realizability is imposed on the truncated constitutive relation to 
determine the coefficients so that, unlike the standard k - ~  eddy viscosity model, the present model will not 
produce negative normal stresses in any situations of rapid distortion. The calculations based on the present 
model have shown encouraging success in modelling complex turbulent flows. 
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1. INTRODUCTION 

The present study concentrates on complex turbulent shear flows which are of great interest in 
propulsion systems. These flows are backward-facing step flows, confined coflowing jets, confined 
swirling coaxial jets, U-duct flows and diffuser flows. Most of these flows have complex structures. 
For example, the confined coflowing jet combines several types of flow structures, such as the shear 
layer, jet, recirculation, separation and reattachment. Accurate prediction of these flows is of great 
importance for engine design in all its key elements. Turbulent free shear flows (such as mixing 
layers, planar and round jets) have also been studied for the purpose of examining the performance of 
turbulence models in different benchmark flows. 

The turbulence model used in this study is a newly developed realizable Reynolds stress algebraic 
equation model which is fundamentally different from the traditional algebraic Reynolds stress 
models. The present model is developed using the invariance theory in continuum mechanics. This 
theory leads to a general constitutive relation for the Reynolds stress tensor in terms of the mean 
deformation rate tensor Uij and the turbulent velocity and length scales characterized by the turbulent 
kinetic energy k and its dissipation rate E.  Pope' applied this kind of constitutive relation to Rodi's 
algebraic Reynolds stress formulation in conjunction with the LRR second-order closure model2 and 
obtained an explicit algebraic expression for the Reynolds stresses for a two-dimensional mean flow 
field. Taulbee3 was able to extend this method to a general three-dimensional flow. We notice that in 
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Rodi's algebraic Reynolds stress formulation, some assumed concepts are in general not valid for 
most turbulent shear flows, e.g. the assumption of constant anisotropy of the Reynolds stresses and 
neglect of turbulent transport of second moments. These assumptions may bring large errors to 
turbulence modelling. In addition, an inappropriate second-order closure model would also add errors 
to this type of model. In this study, Rodi's formulation was not used. We directly impose realizability 
on the constitutive relation for the Reynolds stresses to determine the coefficients in the relation. As a 
result, a realizable explicit expression for the Reynolds stresses is obtained for general three- 
dimensional turbulent flows. Some model constants are line-tuned against a backward-facing step 
flow and then tested in other flows. 

The calculations are performed with a conservative finite volume m e t h ~ d . ~  Grid-independent and 
low-numerical-diffusion solutions are obtained by using differencing schemes of second-order 
accuracy on sufficiently fine grids. For wall-bounded flows the standard wall function approach5 is 
used for wall boundary conditions. The results are compared in detail with experimental data for both 
mean and turbulent quantities. Calculations using the standard k-c eddy viscosity model are also 
carried out for the purpose of comparison. The comparison shows that the present realizable Reynolds 
stress algebraic equation model significantly improves the predictive capability of k+-equation-based 
models, especially for flows involving massive separations of strong shear layers. In these situations 
the standard eddy viscosity model overpredicts the eddy viscosity and hence fails to accurately 
predict the wall shear stress, separation, recirculation, etc. We find that the success of the present 
model in modelling the above-mentioned complex flows is largely due to its effective eddy viscosity 
formulation which accounts for the effect of mean shear rates. According to the present model, the 
effective eddy viscosity will be significantly reduced by the mean strain rate and maintained at a 
correct level to mimic the complex flow structures. 

2. TURBULENCE MODEL 

2.1. Constitutive relation 

Constitutive relations for the Reynolds stresses were derived by several researchers. 1,6,7 Shih and 
Lumley' used the invariant thCory in continuum mechanics and the generalized Cayley-Hamilton 
formulation' to derive a more (perhaps the most) general constitutive relation for the Reynolds 
stresses under the assumption that the Reynolds stresses are dependent only on the mean velocity 
gradients and the characteristic scales of turbulence characterized by the turbulent kinetic energy k 
and its dissipation rate E .  This relation is 
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where 

(2) 
n l  = Ui,kUk,iy n2 = q , k U i , k ,  n, = u i , k U : k ,  n4 = U : k u & ,  

= q , k  U f k  ufi* n7 = ~ , k U l , k U f m U ~ m *  
2 

n5 = ui,kUl,kUl,i3 

Equation (1) contains 11 undetermined coefficients which are generally scalar functions of various 
invariants of the tensors in question, e.g. S,S,  (strain rate) and R,R, (rotation rate) which are 
(n2 + 111)/2 and (n2 - 111)/2 respectively. The detailed forms of these scalar functions must be 
determined by other model constraints such as realizability and by experimental data. 

It is noticed that the standard k-t eddy viscosity model corresponds to the first two terms on the 
right-hand side of (1). Both the two-scale direct interaction approximation approach6 and the RNG 
method7 also provided a relation which is the first five terms on the right-hand side of (1). 

In this study, for simplicity we truncate equation (1) to its quadratic tensorial form, which is of the 
same form as those developed by Yoshizawa6 and Rubinstein and B a r t ~ n . ~  

2.2. Realizability 

Realizability, lo,ll defined as the requirement of the non- negativity of turbulent normal stresses and 
the Schwarz inequality between any fluctuating quantities, is a basic physical and mathematical 
principle that the solution of any turbulence model equation should obey. It also represents a minimal 
requirement to prevent a turbulence model from producing unphysical results. In the following, this 
principle will be applied to the truncated constitutive relation (1) to derive constraints on its 
coefficients. 

Let us first consider a two-dimensional pure mean deformation in which the deformation rate 
tensor contains only non-zero diagonal components, i.e. 

U . . = O  ' J  if i # j .  

In this case the normal stress can be written as 

If we define a time scale ratio of the turbulent to the mean strain rate as q =Sk/&, where 
S = &2SijSij), the above equation can be written as 
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Physically, we know that 
realizability, 

will decrease owing to the stretching by U , , , .  However, by 
should not be driven to negative values. Therefore we require that 

These physically necessary conditions are called the realizability conditions. Similar analysis of 
and also leads to the above conditions. In addition, it should be mentioned that the above 
analysis also holds for the situation of a three- dimensional pure strain rate. These conditions can be 
satisfied in several ways, of which the simplest is perhaps the following: 

‘ 7  1 G 2  2a7 = ‘ T 3  
2 

2a6 = A,  + q 3  + t3 ’ A,  + q3 + t3 ’ 2a2 = -- 3 2a, = 
A ,  + ? ’  A~ + q3 + t3 ’ 

where t = Qk/E, S2 = (2S2$S2$)”2, Qt = (Uij  - U,,;)/2 + 4 ~ ~ ~ ~ 0 ,  and om represents the rotation of 
the co-ordinate frame. A , ,  AZ ,  CT1,  C,, and CT3 will be taken as constants and determined by 
comparison calculations with experiments. 

It can be seen from the above analysis that realizability cannot be fully satisfied if the model 
coefficients a ~ 7  are taken as constant, such as those in the standard k-e model and some anisotropic 
models, e.g. the model of Speziale. l 2  In fact, these models satisfy realizability only in the weak sese, 
i.e. they only ensure the positivity of the sum of the normal Reynolds stresses. For more detailed 
discussion about model coefficients see Reference 13. 

2.3. Model equations 

The realizable Reynolds stress algebraic equation model can be written as 

=:k6,  - v,(Uij + U,,i) 

Two quantities, the turbulent kinetic energy k and its dissipation rate E ,  remain to be detdnined in 
(3). To this end we use the standard k-E model equations 

k,, + U,kj = [ (v + Z-k,] -wUiJ - E ,  

j 

E , ‘ +  q E j  = [ ( v + $ j ]  -c,,piquij E -CE2- ,  E2 
k J 

where 

The coefficients ct,, CE2, (Tk and oE assume their standard values 

Cc1 = 1.44, CQ = 1.92, c k  = 1, ce = 1.3 
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and the other coefficients are taken as 

C,, = -4, C,, = 13, C,, = -2, A1 = 5 .5 ,  A,  = 1000. 

These values are calibrated against the backward-facing step flow of Driver and Seegmiller,14 for 
which a complete set of experimental data is available for both mean and turbulent quantities, and 
they are also found to be appropriate for other complex flows studied in this work. 

3. APPLICATIONS 

3. I .  Diffuser flows 

In 
both cases the flows undergo strong adverse pressure gradients but remain attached. Although the 
flow configuration looks simple, it is not easy to calculate this type of flow accurately, especially for 
the boundary layer quantities. Figure 1 shows the variation in calculated and measured wall friction 
coefficients C, with the axial distance x / R o  (R, is the inlet duct radius). It is seen that the result of the 
present model is in good agreement with the experimental data, while the standard k - ~  (SKE) model 
overpredicts Cf along almost the entire length of the diffuser. The calculated and measured 
displacement thicknesses 6* are compared in Figure 2. The comparison shows that the SKE model 
gives a good prediction in the upstream region but deviates significantly from the experiment 
downstream; the present model prediction is good in the whole region. Figure 3 shows the 

Two conical diffuser flows were calculated, one with an 8" total angle" and the other 
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Figure 3. Shape factor (case of Fraser16) 
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Figure 4. Streamlines 

Table I. Comparison of reattachment points 

Case Measurement SKE Present 

DS 6.26 4.99 5.82 
KKJ 7 f 0.5 6.35 7.35 

comparison of calculated and measured shape factors H. This is the case in which the worst 
agreement with the measurement has been found for both models. Nevertheless, the present model 
still performs considerably better than does the SKE model. 

This case is the experiment of Monson et al.I7 conducted in a 180" planar turnaround duct. It 
features flow with large streamline curvature. Calculations are compared with the experiment at a 
flow Reynolds number of lo6. Figure 4 shows the streamlines computed with the present model. A 
small separation region is found at the bend exit. However, the SKE model does not predict the flow 
separation. Figure 5 shows the comparison of calculated and measured C, along the inner wall. The 
bend is located in the region 21.7 < s / H  < 24.8. Both models are seen to behave in the same 
manner and produce large discrepancies in the bend region. The reason for this may be partially due 
to the use of the wall function, which does not respond to the severe pressure gradient. 
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Figure 6 .  Pressure coefficient along bottom wall (legend as in Figure 5) 
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Figure 7. Turbulent stress profiles (legend as in Figure 5) 

3.3. Backward-facing step flows 

Two backward-facing step flows, measured by Driver and Seegmi1lerl4 and Kim et aZ.,I8 were 
calculated. The former (DS case) has a smaller and the latter (KKJ case) a larger step expansion. The 
computed and measured reattachment points are compared in Table I. The calculated reattachment 
point from the present model agrees well with the experiments. Figure 6 shows the comparison of 
computed and measured static pressure coefficients C, along the bottom wall. The SKE model is seen 
to predict a premature pressure rise, which is consistent with its underprediction of the reattachment 
length, while the present model captures the pressure rise quite well. Figure 7 shows the comparisons 
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of predicted and measured turbulent stresses E, iTv and iZ at the location x = 2, which is in the 
recirculation region. In the KKJ case no reliable experimental data exist for the turbulent stresses due 
to the unsteadiness of the flow. The experimental data of the DS case are considered more reliable 
because of the smaller unsteadiness of the flow. As compared with the results of the SKE model in 
Figure 7, it is seen that the anisotropic terms in the present model increase iiii and decrease 56, 
leading to significant improvements in both iiii and VV except in the near-wall region. On the other 
hand, the anisotropic terms have little impact on UV. The improvement obtained by the present model 
for zdv is mainly due to the reduction in C, by strain rate. 

3.4. Conjined jets 

The general features of confined jets, the experiments of Barchilon and Curtet," are sketched in 
Figure 8. At the entrance, two uniform flows, ajet of larger velocity and an ambient stream of smaller 
velocity, are discharged into a cylindrical duct of diameter Do. The inlet flow conditions can be 
characterized by the Craya-Curtet number C,. The experiment shows that recirculation occurs when 
C, < 0.96. For a given geometry, recirculation as well as adverse pressure gradients can be intensified 
by reducing the value of C, at the entrance. The separation and reattachment points of the predicted 
recirculation bubbles are compared with the experimental data in Figure 9. The experiment indicated 
that as C, decreases, the separation point moves upstream while the reattachment point remains 
practically unchanged. The present model captures this feature well and predicts both the separation 
and reattachment points much better than does the SKE model. The variation in the pressure 
coefficient C, along the duct wall is shown in Figure 10. The pressure distribution is governed by the 
jet entrainment as well as the contraction and expansion of the flow caused by the recirculation 
bubble. The decrease in the ambient velocity induced by the entrainment gives rise to an adverse 
pressure gradient, while the contraction of streamlines produces the opposite effect. These two 
mechanisms interact more intensely with each other as C, decreases and cause the pressure to vary 
little in the region upstream of the centre of the recirculation bubble. However, in the downstream 
part of the recirculation bubble the deceleration of the flow sets up an adverse pressure gradient, the 
slope of which becomes steeper as C, decreases. Therefore the ability to capture the location of the 
recirculation centre will have a direct impact on the prediction of the pressure. Regarding the 
comparison between predictions and experiments, it is seen that although both models predict 
practically the same total pressure rises which are in excellent agreement with the measurements, 
the present model captures the steep pressure gradients better than does the SKE model for all the 
C,-values. 

X 

=$:I- cI - mixing region 
do. 

l U J  

--Y 
t 

+-a 

Ul 

Figure 8. Flow configuration and notation 
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Figure 9. Separation and reattachment points (legend as in Figure 5) 

3.5. Confined swirling coaxial jets 

This is the case experimentally studied by Roback and Johnson.20 Figure 11 shows the general 
features of the flow. At the inlet an inner jet and an annular jet are ejected into an enlarged duct. 
Besides an annular recirculation bubble due to sudden expansion of the duct, a centreline 
recirculation bubble is created by flow swirling. Figure 12 compares the calculation of the centreline 
velocity with the experiment. The negative velocity indicates the central recirculation. It is seen that 
both models predict the strength of central recirculation and the front stagnation point quite well, but 
the present model predicts the rear stagnation point much better than does the SKE model. Figure 13 
shows the comparison of calculated and measured mean velocity profiles at x = 5.1 cm. Both models 
give reasonably good profiles which are within experimental scatter, except for the peak values of the 
axial and radial velocities. Both models have been found to give nearly the same results in the 
downstream region, which can also be seen from Figure 12. 
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Figure 10. Pressure coefficient along duct wall (legend as in Figure 5) 
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Figure 12. Centreline velocity 

1 .o 

0.5 > 

0.0 
-1  0 1 -0.5 0.5 -0.5 0.5 

u (m/s) v (m/s) w ( 4 s )  

Figure 13. Mean velocity profiles at x =  5.1 cm (legend as in Figure 
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Figure 15. Self-similar mean velocity profiles for round jet 

3.6. Turbulent free shear Jrows 

Calculations were also performed for a mixing layer, a plane jet and a round jet. The results shown 
here are only for the jets owing to the space limitation. Figures 14 and 15 show the comparisons of 
the self-similar mean velocity profiles from the model predictions and the various measurements for 
the plane and round jets respectively. In Figure 14 the model predictions are compared with the 
measurements of Gutmark and Wygnanski” for the plane jet. The predictions given by both the 
present model and the SKE model agree well with the experimental data. For the round jet the 
comparisons are made between the model predictions and the measurements of Rodi” and are shown 
in Figure 15. The profile distribution of the mean velocity predicted by the present model agrees well 
with Rodi’s data, while the SKE model predicts a faster spreading of the round jet into the 
surroundings and a wider distribution. 

4. CONCLUSIONS 

A realizable Reynolds stress equation model has been applied to calculate both complex wall- 
bounded flows and free shear flows. The calculations have been compared with available 
experimental data. The comparisons show that the present model provides significant improvement 



1144 T.-H. SHI, J. ZHU AND J. L. LUMLEY 

over the standard k-E eddy viscosity model and that the present model is robust and economical as 
well. This indicates that the present model has good potential to be a practical tool in engineering 
applications. 
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